

 Navigation

 	
 index

 	
 next |

 	Pulilab Coding Guidelines 0.3 documentation

Welcome to Pulilab Coding Guidelines’s documentation!

Contents:

	Style Guide
	HTML

	Javascript

	CSS

	Python

	Django Guidelines
	Project skeletons

	Structure

	Testing

	Deployment

	Blogs to follow

	Web Frontend Guidelines
	Frontend Tooling

	Testing

	Javascript libraries

	Editors
	Sublime Text 2

	Eclipse + PyDev

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Pulilab LLC.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulilab Coding Guidelines 0.3 documentation

Style Guide

Note

Our style guide is based on Mozilla’s [http://mozweb.readthedocs.org/en/latest/js-style.html], Bracket’s [https://github.com/adobe/brackets/wiki/Brackets-Coding-Conventions] and Pocoo’s [http://www.pocoo.org/internal/styleguide/] guides.

HTML

Classes and id’s in HTML use all lower-case with dashes (-), not camelCase or under_scores:

Do this:

<div id="search-results">

Not this:

<div id="searchResults"> // Don't use camel-case for ids
 // Don't use underscore

Always use double quotes (”) to border attributes.

Do this:

<div id="searchResults">

Not this:

<div id='searchResults'>

Javascript

	Use 4 space indents (spaces, no tabs)

	Must pass JSLint. Meaningful defaults for JSLint is

/*jslint vars: true, plusplus: true, devel: true, nomen: true, indent: 4, maxerr: 50 */
/*global $ */

Note

The above recommendation has one caveat.

JSLint warns about lines consisting entirely of whitespace, but we ignore those warnings. The JSLint feature built into Brackets filters out these warnings automatically.

Note

JSHint instead? we might configure it with a single .jshintrc file

	
	Line length

	79 characters with a soft limit of 84 if absolutely necessary. Try to avoid too deeply nested code by cleverly placing break, continue and return statements.

	General Naming and Syntax

Variable and function names use camelCase (not under_scores):

Do this:

var editorHolder;
function getText();

Not this:

var editor_holder; // Don't use underscore!
function get_text(); // Don't use underscore!

Never assign multiple variables on the same line.

Don’t do this:

var a = 1, b = 'foo', c = 'wtf';

	Private variables

Use _ prefixes on private variables/methods:
Do this:

var _privateVar = 42;
function _privateFunction()

Not this:

var privateVar = 42; // Private vars should start with _
function privateFunction() // Private functions should start with _

	Arrays and Objects

Use [] to assign a new array, not new Array().

Use {} for new objects, as well.

Two scenarios for [] (one can be on the same line, with discretion and the other not so much):

// Okay on a single line
var stuff = [1, 2, 3];

// Never on a single line, multiple only
var longerStuff = [
 'some longer stuff',
 'other longer stuff'
];

	Working with jQuery

Use $ prefixes on variables referring to jQuery objects:

Do this:

var $sidebar = $("#sidebar");

Not this:

var sidebar = $("#sidebar"); // Use '$' to prefix variables referring to jQuery objects

	
	Use semicolons:

	Do this:

var someVar;
someVar = 2 + 2;

Not this:

var someVar // Missing semicolon!
someVar = 2 + 2 // Missing semicolon!

	
	Operators

	Always use === for comparison. The only exceptions are when testing for null and undefined

if (value !== 0) {
 console.log('value can not be undefined');
}

Try to avoid ternary, especially if it would use multiple lines:

This is OK:

return user.isLoggedIn ? 'yay' : 'boo';

Not this:

var foo = (user.lastLogin > new Date().getTime() - 16000) ? user.lastLogin - 24000 : 'wut';

	
	Quoting

	Use double quotes in JavaScript. If a JavaScript string literal contains code within it, use single quotes within the string to avoid escaping.

Do this:

var aString = "Hello";
someFunction("This is awesome!");

var htmlCode = "<div id='some-id' class='some-class'></div>";

Not this:

var aString = 'Hello'; // Use double quotes!
someFunction('This is awesome!'); // Use double quotes!

var htmlCode = '<div id="some-id" class="some-class"></div>'; // Use double quotes!
var htmlCode = "<div id=\"some-id\" class=\"some-class\"></div>"; // Within string, use single quotes!

	
	Commenting

	All comments should be C++ single line style

//comment.

Even multiline comments should use // at the start of each line

Use C style /* comments */ for notices at the top and bottom of the file

Annotations should use the /** annotation */ style

/** This is my function

@param arg1 string The first argument
@return boolean
*/
var myFunc = function (arg1) {
 return true;
};

Annotate all functions

CSS

Use Less [http://lesscss.org/]

Python

Use the Pocoo style guide [http://www.pocoo.org/internal/styleguide/]

In addition:

	Lint/PEP-8 compliance (Use Pylint [http://pypi.python.org/pypi/pylint])

 Copyright 2012, Pulilab LLC.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulilab Coding Guidelines 0.3 documentation

Django Guidelines

Project skeletons

The recommended project skeleton to be used for django projects can be found in our django-skel2 [https://github.com/pulilab/django-skel2] repo.

Note

Requires django 1.4 for project creation.

The following commands will start a new project with some feature-rich settings in YOUR_PROJECT_NAME directory.

For normal django projects

To use it simply run the following command when starting a new project:

django-admin.py startproject --template https://github.com/pulilab/django-skel2/zipball/pulilab --extension py,md,ini YOUR_PROJECT_NAME

For appengine projects

To be developed.

Structure

Warning

Likely, as time goes by, some other programmers will have to read and understand your code. As a result, try to follow these guidelines as well as you can!

Testing

Deployment

Use fabric. There are pre-written fabric script in our project templates.

Blogs to follow

	The django community aggregator [http://www.djangoproject.com/rss/community/]

	Our collection of django related links [http://groups.diigo.com/group/pulilab/content/tag/django]

	Djangopackages’ RSS feed [http://www.djangopackages.com/feeds/packages/latest/rss/]

 Copyright 2012, Pulilab LLC.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pulilab Coding Guidelines 0.3 documentation

Web Frontend Guidelines

Frontend Tooling

We recommend using lineman [https://github.com/pulilab/lineman]

It offers several handy features for front-end development:

	Browser auto-reloading on file changes

	Immediately compile CoffeeScript, Less [http://lesscss.org/], and client-side templates as you edit source files

	Provide a development server for fast feedback

	Concatenate & minify all your CSS & JavaScript for production

	Run specs on demand with lineman spec using Testem [https://github.com/airportyh/testem]

	Run specs with output suitable for your CI server using lineman spec-ci

Installation

npm install -g https://github.com/pulilab/lineman/zipball/master

This installs the lineman command.

For browser auto-reloading, you should install a livereload extension [http://feedback.livereload.com/knowledgebase/articles/86242-how-do-i-install-and-use-the-browser-extensions]

Usage

To start a new project

lineman new <project_name>

This generates our preferred directory structure in the app directory.

To serve it for your browser run

lineman run

To run your tests run

lineman spec

Handlebar templates

Lineman supports underscore [http://underscorejs.org/] and handlebars [http://handlebarsjs.com/] templates. Handlebars templates should have one of the following file extensions:

	.hb

	.handlebar

	.handlebars

Troubleshooting

The generated and served files are in the generated directory. If you have some mysterious problem, you should check out the generated files first.

Testing

Use lineman’s builtin features. See the Tooling section above for details.

Javascript libraries

We recommend using one of the following JS frameworks:

	Backbone [http://backbonejs.org/] with Marionette [http://marionettejs.com/], Relational [https://github.com/PaulUithol/Backbone-relational] etc

	Ember [https://github.com/PaulUithol/Backbone-relational]

Moreover, we have a continuously growing collection of articles to read [http://groups.diigo.com/group/pulilab/content/tag/javascript].

 Copyright 2012, Pulilab LLC.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	Pulilab Coding Guidelines 0.3 documentation

Editors

Sublime Text 2

Eclipse + PyDev

 Copyright 2012, Pulilab LLC.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	Pulilab Coding Guidelines 0.3 documentation

Index

 Copyright 2012, Pulilab LLC.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		Pulilab Coding Guidelines 0.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Pulilab LLC.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

